If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-9x-34=0
a = 2; b = -9; c = -34;
Δ = b2-4ac
Δ = -92-4·2·(-34)
Δ = 353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{353}}{2*2}=\frac{9-\sqrt{353}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{353}}{2*2}=\frac{9+\sqrt{353}}{4} $
| 3v−1=8 | | 2(2-2x)=-49 | | -1(1x-1)-0.2=3.8 | | 12x=15x+3 | | g=7*14 | | 24+3x=3x+3(7–1 | | 3=2z−1 | | Y=0.1x+49 | | 7x+1=38 | | 28+y+36=180 | | 5x8=40 | | 10x-7=8x-3 | | 7x+7(x+14)=224 | | 10z=40z+5 | | 5-7x=-4-7 | | 2x/32x=34 | | -(14x+9)-8(13x+10)-21x-1=55 | | 4x=2(x-5)=26 | | 40z+5=20 | | -3y=2y+20 | | 15s-3*(2s)=17 | | 6y+3(y+5)=87 | | (8-6x)=(3x^2-10x+3) | | 40z+5=10z | | 2+3y=25 | | 6x-(-24)=72 | | 8-6x=3x^2-10x+3 | | y=2-9×2/3 | | -.2x-1=-7 | | 6x-12+3x+21=88 | | 15+2t=7t | | 6x+2(2x+18)=96 |